

(Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART –A

1. a)	Explain the Bisection method.	(2M)
b)	Prove that = $E - 1$.	(2M)
c)	Write Newton's forward interpolation formula.	(2M)
d)	Write Trapezoidal rule and Simpson's 3/8 th rule.	(2M)
e)	Write the Fourier series for $f(x)$ in the interval $(0, 2\pi)$.	(2M)
f)	Write One dimensional wave equation with boundary and initial conditions.	(2M)

g) If F(s) is the complex Fourier transform of f(x), then prove that (2M)

$$F\left\{f\left(ax\right)\right\} = \frac{1}{a} \begin{array}{c} s\\ F \end{array}$$

PART –B

- 2. a) Using bisection method, obtain an approximate root of the equation $x^3 x 1 = 0$. (7M)
 - b) Develop an Iterative formula to find the square root of a positive number N using (7M) Newton-Raphson method.

3. a)	2	-1	(6M)
	Evaluate	(tan x).	

b) Using Newton's forward formula, find the value of f(1.6), if (8M)

x	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

1 of 2

|''|'''||''||

(**R16**

Compute the value of
$$+ (\sin x - \log x + e^x) dx$$
 using Simpson's $\frac{3}{8}$ ^{III} rule.
4. a) 0.2 (7M)

b) Using the fourth order Runge – Kutta formula, find y(0.2) and y(0.4) given that (7M)

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, \ y(0) = 1.$$

5. a) Find a Fourier series to represent $f(x) = x - x^2$ in $-\pi \le x \le \pi$. Hence show that (7M) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{4^2} + \cdots = \frac{\pi^2}{12}$.

- b) Obtain the half range sine series for $f(x) = e^x$ in 0 < x < 1. (7M)
- 6. a) Solve by the method of separation of variables (7M) $4u_x + u_y = 3u$ and $u(0, y) = e^{-5 y}$.

b) A tightly stretched string with fixed end points x = 0 and x = L is initially in a (7M) position given by $y = y_0 \sin^3 \frac{\pi}{L} x$ if it is released from rest from this position,

find the displacement y(x, t).

7. a) Express the function
$$f(x) = \frac{1}{v} \quad for |\mathbf{x}| \le 1$$
 as a Fourier integral. Hence (7M)
evaluate $+ \frac{\sin \lambda \cos \lambda x}{\sigma} d\lambda$.
b) Find the Fourier transform of $f(x) = \frac{1 - x^2}{\sigma} \quad for |\mathbf{x}| \le 1$ hence evaluate
 $\frac{1 - x^2}{\sigma} \quad for |\mathbf{x}| > 1$ hence evaluate
 $\frac{1 - x^2}{\sigma} \quad for |\mathbf{x}| > 1$ hence evaluate
 $\frac{1 - x^2}{\sigma} \quad for |\mathbf{x}| > 1$ hence evaluate

(Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Explain the Method of false position.	(2M)
	0)	Prove that $\nabla = 1 - E^{-1}$.	(2M)
	c)	Write Newton's backward interpolation formula.	(2M)
	d)	Write Simpson's 1/3 rd and 3/8 th rule.	(2M)
	e)	Write the Fourier series for $f(x)$ in the interval $(0, 2L)$.	(2M)
	f)	Write the suitable solution of one dimensional wave equation.	(2M)
	g)	If $F(s)$ is the complex Fourier transform of $f(x)$, then prove that	(2M)
		$F\left\{f(x-a)\right\}=e^{ias}F(s).$	
		PART -B	
2.	a)	Using biggetting models 1 seconds the median of the second in \mathbf{y}^3 () ()	(7 M)
	L)	Using disection method, compute the real root of the equation $x^2 - 4x + 1 = 0$.	(7M)
	0)	using Newton-Raphson method.	(/141)
3.	a)		(6M)
	1.)	Evaluate $(\log 2x)$.	
	D)	Using Newton's forward formula compute 7 (142) from the following table:	(8M)
		x 140 150 160 170 180	
		$f(\mathbf{x}) = 3.685 4.854 6.302 8.076 10.225$	
		2	
4.	a)	Evaluate $\pm e^{-x_2} dx$ by using Trapezoidal rule and Simpson's $\frac{1}{2}$ rule taking	(7 M)
			(/141)
		h = 0.25.	
	b)	Find the value of $y at x = 0.1$ by Picard's method, given that	(7M)
		dy y - x	
		$\underline{\ }$ $\underline{\ }$ $\underline{\ }$, $y(0) = 1.$	
		UN YTN	

1 of 2

|"|""||"|||

5. a) Given that $f(x) = -\pi$, $-\pi < x < 0$ x, $0 < x < \pi$ Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = \frac{\pi^2}{8}$. (7M)

b) Express f(x) = x as a half-range cosine series in 0 < x < 2. (7M)

6. a) Solve by the method of separation of variables

$$\begin{array}{c} \square U \\ \underline{\square} U \\ \underline{\square} & \underline{\square} \\ \underline{\square} & \underline{\square} \\ \underline{\square} & \underline{\square} \\ \mathbf{X} & \underline{\square} \\ t \end{array}$$
(7M)
(7M)

b) A string of length *L* is initially at rest in equilibrium position and each of its points (7M) is given the velocity $\frac{\partial y}{\partial t} = b \sin^3 \frac{\pi x}{L}$. Find displacement y(x, t).

7. a) Express
$$f(x) = \begin{cases} 1 & \text{for } 0 \le x \le \pi \\ 0 & \text{as a Fourier sine integral and hence evaluate} \end{cases}$$
 (7M)
 $\int_{0}^{\pi} \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x \lambda) d\lambda$.

b) Find the Fourier sine and cosine transform (7M) of $f(x) = e^{-ax}$, a > 0, x > 0.

|"|""||"||"||||

(Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Max. Marks: 70

(7M)

~~~~~~

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

# PART –A

| 1. | a) | Explain the Newton-Raphson method.                                                                                                                                                                        | (2M) |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | b) | Prove that $\delta = E^{12/2} - E^{-12}$ .                                                                                                                                                                | (2M) |
|    | c) | Write Lagrange's interpolation formula for unequal intervals.                                                                                                                                             | (2M) |
|    | d) | Explain Taylor's series method for solving IVP $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$ .                                                                                                            | (2M) |
|    | e) | Write the Fourier series for $f(x)$ in the interval $(-\pi, \pi)$ .                                                                                                                                       | (2M) |
|    | f) | Write the suitable solution of one dimensional heat equation.                                                                                                                                             | (2M) |
|    | g) | If $F(s)$ is the complex Fourier transform of $f(x)$ , then prove that<br>$\begin{cases} \begin{pmatrix} 0 \\ f \\ x \\ \cos ax \end{cases} = \frac{1}{2}F \begin{cases} 0 \\ s+a + F \\ s-a \end{cases}$ | (2M) |
|    |    | PART –B                                                                                                                                                                                                   |      |
|    |    |                                                                                                                                                                                                           |      |

- 2. a) Using Regula-Falsi method, compute the real root of the equation  $x^3 4x 9 = 0$ . (7M)
  - b) Develop an Iterative formula to find  $\frac{1}{N}$ . Using Newton-Raphson method.

| 3. a) | Evaluate | <u>X<sup>2</sup></u> . | (6 | 5M) |
|-------|----------|------------------------|----|-----|
|       |          | $\cos 2x$              |    |     |

b) Compute f(27) Using Lagrange's formula from the following table: (8M)

| Х             | 14   | 17   | 31   | 35   |
|---------------|------|------|------|------|
| f( <b>x</b> ) | 68.7 | 64.0 | 44.0 | 39.1 |

 $1 \ of \ 2$ 

# |"|""||"|||

6.

( **R16** 

SET - 3

4. a) Evaluate 
$$+ \underbrace{e}_{0}^{0.6} e^{-x_2} dx$$
 by using Simpson's  $\frac{1}{3}$  rd rule taking seven ordinates. (7M)

b) Given that 
$$\frac{dy}{dx} = 2 + \sqrt{xy}$$
,  $y = 1 = 1$ . (7M)

Find y(2) in steps of **0.2** using the Euler's method.

$$\mathbf{x} \quad , 0 \le \mathbf{x} \le \mathbf{\pi} \tag{7M}$$

5. a) Find the Fourier series for the function  $f(x) = 2\pi - x$ ,  $\pi \le x \le 2\pi$ Also deduce that  $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = \frac{\pi^2}{8}$ .

b) Obtain the Fourier expansion of  $f(x) = x \sin x$  as a cosine series in  $(0,\pi)$ . (7M)

Solve the Laplace's equation  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$  in a rectangle in the *Xy*-plane,(14M)  $0 \le x \le a$  and  $0 \le y \le b$ satisfying the following boundary condition u(0, y) = 0, u(a, y) = 0, u(x, b) = 0 and u(x, 0) = f(x).

# 7. a) Find the Fourier sine transform of the function (7M) x , 0 < x < 1</li> f(x) = 2-x , 1 < x < 2 .</li> y , x > 2 b) Find the Fourier cosine integral and Fourier sine integral of (7M)

find the Fourier cosine integral and Fourier sine integral of  $f(x) = e^{-kx}, k > 0$ .

|"|""||"||



(Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B

#### PART –A

1. a) Explain Iteration method. b)  $\frac{1}{\text{Prove that } \infty = \frac{1}{2} \left( E^{12} + E^{-12} \right).$ (2M) (2M)

c) Prove that 
$${}^{3}y_{2} = \nabla^{3}y_{5}$$
. (2M)

d) Explain Runge-Kutta method of fourth order for solving IVP (2M)

$$-= f(x, y)$$
 with  $y(x_0) = y_0$ 

e) (2M) Write the Fourier series for f(x) in the interval (-L, L).

Write the various possible solutions of two-dimensional Laplace equation. (2M) f)

> (2M) g) If F(s) and G(s) are the complex Fourier transform of f(x) and g(x), then prove that  $F\left\{af(x)+bg(x)\right\}=aF(s)+b$ G(s).

#### PART –B

2. a)

Find a positive real root of the equation  $x^4 - x - 10 = 0$  using Newton-Raphson's (7M) method. (7M)

b) Explain the bisection method.

| 3. | a) | Evaluate | $^{2}(\cos 2x)$     | (6M) |
|----|----|----------|---------------------|------|
|    |    | Lvaluate | $(\cos 2\lambda)$ . |      |

b) Using Newton's backward formula compute f(84) from the following table: (8M)

| X             | 40  | 50  | 60  | 70  | 80  | 90  |
|---------------|-----|-----|-----|-----|-----|-----|
| f( <b>x</b> ) | 184 | 204 | 226 | 250 | 276 | 304 |

( **R16** 

# SET - 4

4. a) Evaluate 
$$+ e^{-x_2} dx$$
 by using Trapezoidal rule with  $n = 10$ . (7M)

b) Obtain Picard's second approximate solution of the initial value problem (7M)  

$$\frac{dy}{dt} = \frac{x^2}{2}, y(0) = 0.$$

$$\frac{dy}{dx} = \frac{x}{y^2 + 1}$$
,  $y(0) = 0$ 

1

5. a) Obtain the Fourier series  $f(x) = \frac{\pi - x^2}{2}$  in the interval  $0 < x < 2\pi$ . Deduce that (8M)

$$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{4^{2}} + \frac{1}{6} = \frac{\pi^{2}}{6}.$$
  
b) Express  $f(x) = x$  as a half-range cosine series in  $0 < x < 2$ . (6M)

6. a) Solve by the method of separation of variables (7M)

$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y} \text{ and } u(0, y) = 8e^{-5y}.$$
b) Solve the Laplace's equation 
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ in a rectangle in the } xy \text{-plane,}$$
(7M)

 $0 \le x \le a$  and  $0 \le y \le b$  satisfying the followingboundary condition u(x, 0) = 0, u(x, b) = 0, u(0, y) = 0 and u(a, y) = f(y).

- 7. a) Find the Fourier cosine integral and Fourier sine integral of (7M)  $f(x) = e^{-ax} - e^{-bx}$ , a > 0, b > 0.
  - b) Find the Fourier transform of  $e^{-a^2 x^2}$ , a > 0. Hence deduce that  $e^{-\frac{x^2}{2}}$  is self (7M) reciprocal in respect of Fourier transform.