Code No: RT22012 (R13) (SET - 1)

II B. Tech II Semester Supplementary Examinations, Nov/Dec-2016 HYDRAULICS AND HYDRAULIC MACHINERY

(Civil Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the questions in **Part-A**
- 3. Answer any **THREE** Questions from **Part-B**

PART-A

- 1. a) What do you know about specific energy.
 - b) Explain the statement of Buckingham pi theorem.
 - c) What are different applications of radial flow turbines?
 - d) Differentiate between Francis turbine and Kaplan turbine.
 - e) Explain about different characteristic curves of turbine.
 - f) Write about cavitation in the pump.
 - g) What are various components of reciprocating pump.

(3M+4M+4M+3M+3M+3M+2M)

PART-B

- 2. a) Distinguish between Prismatic and Non-prismatic channels.
 - b) Write a short note on velocity distribution in open channel flow.
 - c) A rectangular channel has a convex curvature in a vertical plane on its bed. At a section the bad has an inclination of 30⁰ to the horizontal and the depth measured normal to the flow is 0.75 m. A certain flow produces a normal acceleration of 0.4 g which can be assumed to be Constant throughout depth. Determine the pressure distribution and compare with hydrostatic distribution. Also determine the pressure distribution if the boundary has a concave curvature to the flow and rest of the data remain same?

(4M+4M+8M)

- 3. a) A spillway model is constructed on a scale of 1:25. Calculate
 - (i) the prototype discharge Corresponding to model discharge of 0.12 m3/sec
 - (ii) the velocity in model corresponding to Prototype velocity of 3.5 m/s.
 - b) What is dimensional homogeneity? Explain Geometric, kinematic and Dynamic similarity.

(8M+8M)

- 4. a) What is the importance of inclined and curved two values and write clear note on moving feat.
 - b) What are the applications of radial flow turbines and explain.

(8M+8M)

R13

- 5. a) Explain in detail the various characteristic curves present in the case of turbines.
 - b) A turbine develops 7460 kW under a head of 24.7m at 135 rpm. What is the specific speed? What would be its normal speed and output under a head of 20.5m?

(8M+8M)

- 6. a) With a neat sketch, explain the principle and working of a centrifugal pump.
 - b) A centrifugal pump rotating at 1000 rpm delivers 160 liters/s of water against a head of 30 m. The pump is installed at a place where atmospheric pressure is 1×10^5 $P_a(abs.)$ and vapour pressure of water is 2 kP $_a$ (abs.). The head loss is suction pipe is equivalent to 0.2 m of water. Calculate minimum NPSH.

(8M+8M)

- 7. a) Briefly explain the classification of power plants based on the storage characteristics.
 - b) Write clear note on the importance of load factor?

(8M+8M)
